Gravitation
Gravitation
The following text is used only for teaching, research, scholarship, educational use and informative purpose following the fair use principles.
We thank the authors of the texts and the source web site that give us the opportunity to share their knowledge
Physics
Gravitation
Kepler’s Laws
- Planets move in elliptical orbits with the sun at one focus.
- As a planet moves in its orbit, a line drawn from the sun to the planet sweeps out equal areas in equal time intervals.
- If T is the period and a is the length of a the semi-major axis, then T2/a3 is a constant
Newton’s Universal Law of Gravitation- any massive objects in the universe exert an attractive force on each other called the gravitational force.
Fg= G = 6.67 x 10-11 Nm2/kg2
Where m1 is the mass of the first object, m2 is the mass of the second object and r is the distance between their centers of masses. And Fg is the gravitational force between them. G is the universal gravitation constant.
The force is negative because it is an attractive force.
Using this equation, you can determine the acceleration of gravity on the surface of a planet by setting m2g= and solving for g.
m2 will cancel out, m1 is the mass of the planet and r is the distance from the center of mass of the planet.
If there are more than 2 objects, you can find the net force on one object by finding its gravitational attraction to each of the masses surrounding it and then performing a vector summation of those forces. Here it could be helpful to write the forces as unit vectors ( i and j).
In the equation, the masses are directly proportional to the force. This means that if one mass is doubled, the force between the two objects is doubled and if both masses double, the force between the two objects is ____________.
An important part of this equation comes from the fact that r2 appears in the denominator. This is known as an inversed-square law. From this you can see that as the distance between the two objects is doubled, the force between them is actually ¼ of what it was before. Likewise, if the distance is tripled, the force becomes ______ of what it was before.
This also means that as you go up in altitude, the acceleration due to gravity lessens, which also lessens your weight.
The gravitational acceleration of a planet follows the same rules apply. Planet X has a mass M, radius R and acceleration due to gravity g. Planet Y has a mass of 2M and radius 3R. What is the acceleration due to gravity of this planet? ____g
Circular Orbits
If we can assume a circular orbit for a satellite in orbit around a planet (or a planet around a star) we know that the gravitational force between them is causing the circular motion. In other words, centripetal force = gravitational force.
Fcentripetal = Fgravitation
m1v2/r=
where m1 is the mass of the satellite in orbit and m2 is the mass of the planet, and r is the distance between the objects’ centers.
Using these equations, you can obviously solve for any of the variables included, but you can also solve for the satellite’s period. Period, T,is the time it takes for the satellite to complete one full revolution.
T =
Gravitational Fields
Spherical Shell – When you are outside of the shell, it can be treated as if all the mass is at the center, a distance r away.
When you are inside a spherical shell, you experience no net gravitational force.
g(r) = 0 Fg = 0 for r< R
g(r) = Fg = for rR
Solid Sphere – When you are outside of the sphere, it can be treated as if all the mass is at the center, a distance r away.
When you are inside a solid sphere, the mass in the shell above you exerts no net gravitational force (like above). However, the mass in the sphere “below” you does exert a force. So when you are a distance r away from the center, you experience a gravitational force due to the mass and radius of the mass “beneath” you acting as its own planet.
g(r) = r Fg = r for r< R
g(r) = Fg = for rR
The equations for r< R come from a more general equation
Fg= In this space, solve for Fg = r
using Newton’s Universal Law of gravitation. Hint: use density to put minside in terms of known variables such as the mass of the planet and the radius of the planet.
Gravitational Potential Energy
U = - - dr
U = -
This means that the gravitational potential energy is negative at the surface of the planet and becomes closer and closer to zero until you are an infinite distance away, in which case the gravitational potential energy is zero.
You will want to use this equation instead of U= mgh when you are dealing with a problem where the projectile is far from the surface of the Earth (when g is no longer 9.8 m/s2).
Gravitational potential energy is also helpful when solving problems involving the conservation of mechanical energy, such as when a projectile is launched away from the surface of the Earth or when a projectile in space comes towards the Earth.
Total mechanical energy E= Uo + Ko
Uo + Ko = Uf + Kf
Instead of using mgh here, make sure you use the new form.
- + ½ m vo2 = - + ½ m vf2
(make sure that you use the distance from their center of masses for r).
Escape Speed- the minimum speed required to escape from the Earth’s gravity.
If Ko > Uo then it will escape (unbounded)
If Ko < Uo then it won’t escape (bounded)
So if E = Ko + Uo 0, than the objects can escape!
- + ½ m vo2 0
then = ½ m vo2
so vescape =
Source : http://www.groovytoo.com/robinson/AP/gravitation%20notes.doc
Web site link: http://www.groovytoo.com/robinson/
Author : Ms. Robinson
If you are the author of the text above and you not agree to share your knowledge for teaching, research, scholarship (for fair use as indicated in the United States copyrigh low) please send us an e-mail and we will remove your text quickly.
Gravitation
Gravitation
Gravitation
This is the right place where find the answers to your questions like :
Who ? What ? When ? Where ? Why ? Which ? How ? What does Gravitation mean ? Which is the meaning of Gravitation?
Gravitation
Alanpedia.com from 1998 year by year new sites and innovations
Main page - Disclaimer - Contact us